
 
 

QUasino System Design Document 
 

TEAM 23 MONTREAL 
 

Graydon Belsher 

Oscar Brown 

Abbey Cameron 

Victor Ghosh 

Matthew Mamelak 

Cameron Overvelde 

Ethan Silver 

Henry Wilson 

 

Roy Li 

 

CMPE 320 

Nov. 6th, 2022 

 

 

 

 

 

 

 

 



Introduction 
Online casinos were first popularized in the early 2000s. However, they have seen tremendous growth 

and mass adoption from new users in recent years. There are several reasons for this rise, including the 

COVID-19 pandemic, which forced the closure of in-person casinos and led many to switch to online 

casinos. The convenience of playing classic casino games from the comfort of your home was appealing 

to many and helped grow many online casinos, such as Roobet, BetMGM, and BetRivers. Furthermore, 

with the recent passing of provincial laws, online casinos have become legal to operate in Ontario which 

has allowed for even more growth in this space.  

Purpose of System 
Despite the growth of online casinos, many potential users are discouraged from playing due to the risk 

of losing money. The purpose of an online casino with free currency is to provide a fun and entertaining 

way to gamble without the element of risk. This type of gambling is often used by online casinos to 

attract new players or to promote new games. Additionally, online gambling with fake money can be 

used as a low-stakes, convenient, training tool for new or inexperienced gamblers. This app can also act 

as a more accessible gaming option, as it does not require age verification or identification. 

Design Goals 
This program will be a virtual casino experience, using the C++ programming language. The objective of 

the game is to provide an engaging casino experience for players. The game will feature three popular 

casino games and allows the player to play without betting real money. Players will be given a starting 

balance — this will be used in place of real currency. The players can spend their balance in the form of 

casino chips to participate in the games and try to earn more.  

The application will feature a home page. This GUI will display the games that are possible to play, as 

well as the player’s current balance. From here, they can select which game they would like to play: 

Blackjack, Roulette, or Odds Are. Instructions for the games will be available in a drop-down menu once 

a game is chosen to play. 

Table 1. Functional requirements of the system 

Stakeholder  Goal  Motivation  

User  To be shown how desktop 

application functions through on-

screen guide  

I can become more familiar with the 

app when its first started  

User  To pick and play one of the 

games  

I can play the game  

User  To view game rules  I can learn to play a new game  

User  To view my balance and set limits  I can learn about betting losses  

User  To place bets using chips  Betting feels realistic   

Blackjack player  To view play tips  I can improve at the game  



Roulette player  To view outcome odds  I can learn about the odds  

Odds Are Player To view outcome odds I can learn about the game odds  

User  To have the option to exit each 

game  

I can navigate between the different 

casino games  

User  To save my balance  I can exit the application and reload 

it with my past balance  

Performance 
The system should have a relatively quick response time. It should take no more than 2 seconds to 

process user input, including typed input or mouse clicks, and opening pages. The system will only 

perform one task at a time to reduce any variable conflicts, etc. The system should also be able to run 

smoothly on a variety of devices (including Mac and PC). It should have simple controls that can be 

easily learned and mastered, and it should be able to be played in short bursts. The game should also be 

able to be played offline with minimal data usage. It must be able to withstand being played for 

extended periods of time without crashing or losing data. 

Dependability 
The dependability of a game generally refers to how well the game works, and how stable it is. This can 

be affected by various factors, such as the quality of the code, the quality of the hardware it is running 

on, and user input. 

The system will not implement any API’s or security features, so there should be no latency issues 

affecting the speed of the system (i.e., no lag time). 

The player will interact with the game via the keyboard for entering betting amounts or other game 

inputs (e.g., guessing a card) and mouse clicks to interact with elements on the screen. The software is a 

single player game; only one user can interact with the system at a time. Invalid user input will be 

handled by exception classes, for example, if the player entered a number out of bounds, or if they 

entered a color that is not used in the game. A series of tests will be conducted to ensure the output 

received is the output that is specified. 

Testing will be performed to ensure all user edge cases are accounted for, and to ensure that the 

desired behavior correlates with the actual results.  

Cost 
There is no cost to implementing this software or to updating and maintaining the system, as it will be 

hosted on the user’s own computers. 

Maintenance 
The system will be hosted locally on each user’s device. Each subsystem (game) in this system will 

function (relatively) separate from the rest of the games. They may share a few classes, but because 

they are mostly distinct, it will be easy to update and add functionality to the overall system and to 

individual subsystems. Since each subsystem will have its own set of classes, the code will be easy to 

follow and understand. Inheritance between classes should help with debugging certain processes and 



finding the root of an error. A shared repository on BitBucket will be used to push and pull revised code. 

Using BitBucket will allow access to versions of the program, and see which member is responsible for 

each segment of code and any updates.   

End User Criteria 
There are several considerations for the end user criteria of this system. The casino game should work 

on a variety of operating systems (Windows, MacOS, Linux, etc.). The app should have a user-friendly 

interface and offer a variety of casino games. The app should provide customer support (instructions) in 

case any problems are encountered. 

The system’s graphical user interface (GUI) will have an intuitive layout, with an instruction dropdown 

menu located in the upper right corner of the screen. The player will also be able to see their credit 

balance, displayed at the top of the home screen. Once the user chooses a game to play, each game will 

have an instruction menu accessible at any time. Having a clear set of instructions will make it easy for 

new players to learn/understand how to play each game, as well as for more experienced players to 

check if the rules are different from how they normally play. 

Finally, whenever the system requests user input, they will be prompted by a popup box to enter 

information, such as placing their bet. The popup box will be restricted, and the user will receive 

feedback if their input is invalid. 

Definitions, Acronyms and Abbreviations 
Below is a list of definitions for some of the language used in this document:  

• GUI – Graphical user interface  

• Player(s) – Also known as the software application users  

• Credits – Players funds are represented via credits  

• Chips – Players can place bets from their total balance in the form of chips, which each have 

different values representing a dollar amount  

• API – Application Programming Interface 

Software Specifications 

Subsystem Decomposition 
For clarity purposes, the application has been divided into four subsystems: the menu, Blackjack, 

Roulette, and Odds Are. The routing controller will control which of these windows is displayed and 

hidden. Diagrams and use cases are given separately in their respective subsystem sections. 

Global Software Control 
The UserController class will be implemented to act as the primary global control of the system. This 

class contains an unsigned private balance variable which will store the user’s balance. An accessor 

method will be used to retrieve the user’s balance, so it can be displayed in various places across the 

application. There will also be a mutator method used to adjust the balance; however, the user will 

never have direct access to the balance variable to prevent unfair changing of the balance.  

The primary global control of page displayed will be handled by the class RouterController. This class will 

be sent information from the various buttons across the application, then complete the proper actions 



to display a page. Upon entering a game, the router control object will hide the menu page as opposed 

to being destroyed to avoid re-rendering the page each time the user navigates to it. This is at the 

expense of the memory needed to hold the menu page. Conversely, upon exiting a game window, the 

game window will be destroyed by the route controller when the exit button is hit. This is done to 

minimize the memory needed by the application and is done under the assumption that an individual 

game’s window will be accessed less frequently than the menu page meaning less re-rendering.  

Boundary Conditions 
The only boundary condition for the app will be through will be through the menu frame. You can exit 

through the settings popup window which will begin deconstruction of the CasinoApp object. This is 

done by calling the exit method of the app frame which is implemented by WxWidgets. Similarly, startup 

is initiated by the CasinoApp object, but will result in the rendering of the MenuFrame along with 

buttons to each of the games. The most expected error for this app has to do with the number of credits 

bet. For example, if the user has 10-dollars in their account and attempts to bet 15-dollars an exception 

will be thrown. Moreover, if the player has 10-dollars and places two bets which sum is greater than 10 

dollars the game should throw an exception. Finally, if a player tries to commence a game without 

wagering any credit the game will again throw an exception and not begin. 

Persistent Data Management 
This application will store all data in a local instance of the app and will not utilize a database. This was 

done to simplify the application and eliminate database transactions to speed up operation. 

Access Control and Security  
There will only be one user case for this app, a player. A player can interact with all front-end 

components but will not have access to various private elements of classes. Namely, the userController 

will be kept private from the user to avoid being able to unfairly change their balance.  

Given that the application will not be dealing with real money, there are no real risks or special 

considerations which must be taken. Additionally, the user will not be required to enter any information 

such as a username, so there are no real privacy concerns with regards to usernames, passwords, or 

personal information. 

UML Class Diagram 
The entire UML class diagram for the QUasino Application is included in the Appendix. While each 

subsystem subsection will include UML diagrams specific to the functionality of each subsystem. 

Subsystem 1: Menu Page and Routing 

Use Cases 

Enter Settings 

Participating actors 
- User 

- MenuPopup 

- RulesPopup 



Flow of events 
1. User wants to view rules 

2. User presses settings button 

3. Settings popup appears over the Menu Frame 

4. User selects a game for which to view the rules 

5. Signal is sent to the PopupControl which chooses the correct rules popup to appear 

6. Rules popup appears and displays a description of the game 

7. User clicks somewhere not on the popup 

8. Rules popup disappears 

9. User clicks somewhere not on the settings popup 

10. Settings popup disappears and the view is not the original menu frame 

Entry condition 
- User has selected the settings popup button 

Exit condition 
- User closes rules and settings popups 

Quality requirements 
- Popups appear and disappear smoothly and leave the menu frame unaffected 

User selects game to play 

Participating actors 
- User 

- MenuFrame 

- RouterControl 

- Game Window 

Flow of events 
1. User enters the main menu of the application 

2. User clicks a button to enter a game 

3. Button sends signal to RouterControl 

4. RouterControl determines appropriate Game window to open 

5. Game window is rendered 

6. Menu Frame is hidden 

Entry condition 
- User enters the app 

Exit condition 
- User clicks game button and enters game window 

Quality requirements 

- Game windows Render in 2 seconds maximum 

Object Model 
1. Entities: User, GameRules, MenuPopup 



2. Control: UserControl, RouteControl, PopUpControl 

3. Boundary:  

a. SettingsButton 

i. SettingsPopup 

1. RouletteRulesButton 

a. RulesPopupFrame 

2. BlackJackRulesButton 

a. RulesPopupFrame 

3. PickerRulesButton 

a. RulesPopupFrame 

b. RouletteImage 

i. RouletteButton 

c. BlackjackImage 

i. BlackjackButton 

d. PickerImage 

i. PickerButton 

Sequence Diagram 
The following sequence diagrams follow the typical flow of operation for a user entering the menu 

frame, navigating to a game page, and then playing this game. Figure 1 shows the case of the user 

navigating to the Roulette game, then exiting the game.  

 

Figure 1: Sequence diagram for main menu. 

State Chart Diagram 
The state diagram below demonstrates the state behavior of the menu. Implementation and state 

diagrams for game subsystems are shown in their respective sections. The Settings process is a popup, 



meaning the menu will remain visible and active during use. The menu will remain active while all other 

games are being played. 

 

Figure 2: State Chart diagram for main menu. 

Use Case Diagram 

 

Figure 3: Use Case diagram for main menu. 



UML Diagram 
The UML diagram below shows the highest level and menu classes for the app. It includes frames for the 

individual games, the implementation details of which are discussed in their respective subsystem 

sections. 

 

Figure 4: Class diagram for main menu. 

Design Goals 
While logic associated with the menu page is limited, it is essential that the menu provides a smooth 

navigation experience for the user. Specifically, this includes the settings popup rendering in under a 

second and in an aesthetically pleasing manner. While The menu frame is not directly in control of how 

fast the game frames will rendering, it is required that upon pressing a game button, a signal is sent to 

the routeController and then passed on to begin rendering the game frame with negligible delay.  

While the menuFrame is not expected to be memory intensive, it is important that it uses as little 

memory as possible. This is due to the decision to keep the menu page hidden instead of destroyed 

when it is exited to avoid re-rendering. This will also ensure that upon opening the app the app object is 

able to render the entire menu in less than a second. 

Software Hardware Mapping 
Mouse clicks on the various buttons of the menu will be mapped to their respective actions. Not special 

memory considerations will be taken when dealing with the menu as logic and storage needed are 

limited. 



Subsystem 2: Roulette 

Use Cases 

Play Roulette 

Participating Actors 
- User 

- GameSelection 

- Balance  

Flow of events 
1. User wants to play roulette; selects roulette  

2. RouterController responds by displaying roulette UI (wheel, table, chips, balance) 

3. Betting round begins 

4. User selects which token they would like to bet 

5. User selects inside or outside position to place token (process can be repeated multiple times) 

6. UI displays location of chips placed in the betting round on the table 

7. User submits bets once satisfied, betting round ends 

8. Random number is generated for roulette spin, wheel spins until arriving at number 

9. Random number is checked against each individual bet 

10. Display spins wheel until ball is at random number 

11. Money is awarded/ removed to balance following hit/ loss 

Entry condition 
- User has selected roulette game to play 

Exit condition 
- User has either won or lost at a round of roulette 

- User decides to exit to main menu 

Quality requirements 
- Bet placing process is smooth and quick 

- Wheel spinning animation is accurate 

- Checking bets is quick 

- Winnings are returned immediately 

- Credits lost are deducted from the User after loss 



Use Case Diagram 

 

Figure 5: Use case diagram for roulette 

Object Models 
1. RouletteButton 

a. RoulettePopUpWindow 

i. RouletteTable 

ii. RouletteWheel 

iii. ChipTaskBar 

1. ChipIcon 

a. BetConfirmButton 

b. PopUpWindowCloseButton 



Sequence Diagram 

 

Figure 6. Sequence diagram for Roulette 

UML diagram  

 



 

Figure 7: UML diagram for roulette 

State Chart Diagram 

 



Figure 8: State Chart diagram for roulette 

Design Goals 
Within roulette, there exist a couple fundamental game functions that require optimization to ensure an 

ideal user experience. The first of which is the function spinBall() which will be used to generate the 

random number corresponding to a value on the roulette wheel. The functions degree of randomness 

will have to be sufficient where our game accurately emulates a real game of roulette. Secondly, the 

checkBets() function is used to verify whether any of the players active round bets have successfully hit 

when compared to the roulette wheel value that has been spun. The function will be required to 

correctly identify how many of the players' bets have landed and consequently award or remove the 

corresponding amount of money. Both the spinBall() and checkBets() functions will need to efficiently 

generate a value on the roulette and check the user's current bets to allow the player to continue with 

to the next round of roulette or exit to the homepage in a timely manner.  

Software Hardware Mapping 
The User will rely on the keyboard to supply bet input for each individual bet in each roulette round. 

While the mouse right click will be used to select the roulette game, select inside and outside bets, 

submit the bets in each roulette round, and select either continue to next round or exit to home page. 

Subsystem 3: Blackjack 

Use Cases 

Play Blackjack 

Participating Actors 
- BlackJackControl 

- Player 

- Dealer 

- Balance 

Flow of Events 
1. User wants to play Blackjack 

2. User clicks on Blackjack button in main menu to begin game 

3. Blackjack game page opens 

4. BlackJackControl generates a shuffled deck object 

5. User clicks instruction button to learn how to play 

6. User chooses number of chips to bet by clicking on chip icons. Screen displays most recently 

clicked chip and total value of bet 

7. Screen shows current balance in bank, each chip added subtracts its value from total balance 

8. User clicks “Deal” button to deal hand and begin the round 

9. Cards are dealt to dealer and user; graphics show cards being dealt. Players cards are face up; 

their sum is presented on the screen. Dealer has one card face up, one face down. Face up 

card’s value is presented on screen 

10. User is given options to play the hand: hit or stand. In applicable cases, the player may split or 

double. The user keeps hitting until they stand, or their hand exceeds a value of 21. 



11. Screen reveal dealer’s second card. If value is 16 or less dealer will continuously draw cards until 

the total is 17 or more 

12. If player wins hand, they win double what they bet and balance increases. If player loses, they 

lose what they bet (balance has already been decreased). If the dealer and player tie, player 

receives back what they bet. 

13. User is given the option to play again or exit back to main menu. 

Entry Condition 
- User has selected Blackjack from main menu 

Exit Condition 
- User has successfully played a hand of blackjack or has quit before clicking the deal button. 

Quality Requirements 
- Bet placement is intuitive 

- Payout is instant after each hand 

- Dealer decisions are accurate  

Use Case Diagram 

 

Figure 9: Use case for Blackjack  



Sequence Diagram 

 
Figure 10: Sequence diagram for Blackjack use case 

Object Model 
Entities: Dealer, Player, Deck 

Control: BlackJackControl 

Boundary: 

- HelpButton 

- BetWindow 

o BetAmount 

- DealerWindow 

o HandImage 

o TotalValue 

- PlayerWindow 

o HitButton 

o StandButton 

o HandImage 



o TotalValue 

- QuitButton 

Class Diagram 

 
Figure 11: UML diagram for blackjack 

Classes: 
1. Card: describes attributes of a card 

- Constructor takes a Rank and Suit 
- Private enum Suit 
- Private enum Rank 
- getSuit() returns suit of card 

 - getRank() returns rank of card 
 - getValue() returns value of card 

- getImage() returns string that contains a filename to a specific image for the GUI 
4. Deck: describes a deck of 52 cards 
 - Constructor takes no values 



 - Private cards contains list of cards in deck 
 - draw() returns Card object and removed it from deck 
 - shuffle() shuffles cards in deck returning to 52 card deck 
5. Hand: describes a hand of cards 
 - Private cards contains cards in hand 
 - getValue() returns total value of hand 
 - add(Card c) adds a card to the hand 
 - clear() removes all cards from hand 
6. Player: describes a game player 
 - Private hand contains the players Hand object  
 - Private bet contains the players current bet about  
 - hit() implements deal from BlackJackControl 
 - stand() ends a players turn 
 - setBet() 
 - getHand() returns current Hand object 
7. Dealer: extends Player 
 - turn() has dealer operate as described in flow of events 
 - getHand() overrides Player to hide card until flipped 
 - flipCard() allows getHand to show all cards in hand 
 



State Chart Diagram 

Figure 12: State chart diagram for blackjack 

Design Goals 
The Blackjack control scheme will be intuitive and easy to learn. After placing their bet players will be 

presented only with applicable options to the cards they were dealt. Explanations for why these options 

were presented will be easily accessible under the help menu. Users may also understand the dealer 

choices by reading the help menu. Finally, a countdown can be found in this menu to inform the user of 

when the shoe will be replaced. When a shoe or deck is shuffled its must be done randomly but because 

cards will be pulled from the top this does not need to be perfect.  

Subsystem 4: Odds Are 

Use Cases 

Play Odds Are 

Participating Actors 
- User  

- Balance  



Flow of Events:  
1. The user wants to play the card guessing game. 

2. The user clicks on the card guessing game icon from the home page/main screen. 

3. The user is directed to the home page of the card guessing game. They have the option between 

reading the instructions and starting the game. 

4. Once the game has started, prompt the user for two inputs: user bet amount and the guessing 

multiplier. 

5. If the bet amount is invalid, the player will be prompted to enter a new amount 

6. The program generates a random card for the player to guess between the bounds that they 

specified in step 4. 

7. Prompts the user to guess a card.  

8. Compares the user input with the card generated in step 6. Returns the result. 

9. Player gets winnings/loss 

10. Players can choose to exit the game or re-play. 

Entry condition  
- User has selected the card guessing game to play  

Exit condition  
- User has either won or lost at a round of the game 

- User decides to exit to main menu  

Quality requirements  
- Bet placing process is smooth and quick  

- Card matching is accurate  

- Checking bets is quick 

- Payout/loss is immediate after game completion  

Use Case Diagram 

 

Figure 13: Use case diagram for roulette 



Object Models 
1. Entities: User, Instructions, GamePopup 

2. Control: UserControl, PopupControl 

3. Boundary: 

a. InstructionButton 

i. InstructionPopup 

ii. InstructionCloseButton 

b. StartGameButton 

i. GameImage 

ii. GameInputPopup 

iii. ReplayGameButton 

iv. ExitGameButton 

Sequence Diagram 

 

Figure 14: Sequence diagram for oddsAre 



Class Diagram 

Below is a breakdown of how the class for Odds Are will be structured: 

Figure 15: UML diagram for oddsAre 

Class OddsAreGame 
Functions 

CardNumGen();       //gets user input of how many cards they want to guess from 
bonusMultiplier();  //calculates if the player gets a win in a row multiplier  
randomCardGen(); //generates a random Card object within the boundaries of the range 
pointsEarned();      //calculates how much the player earned in a round 
cardListGen();        //generate a list up to n cards for player to guess from 
searchList();           // searches list to see if playerGuess is in the list 
GuessException(); //enter invalid input 

Variables 

Int bet;                        //how much player is betting 
Int countWin;            //keeps track of how many wins in a row the player has 
Card cardToGuess;   //Card object generated by randomCardGen() 
String playerGuess;  //get the players guess 
Int score;                    //returned by pointsEarned(); final player score 
List cardLayout;        //list containing various card objects 
 

 

Uses Card(), Rank() and Suit() classes used in Blackjack. 



 

State Chart Diagram 

 

Figure 16: State chart diagram for oddsAre 

Design Goals 
The game Odds Are is a card guessing game where a player tries to guess what card the dealer has. The 

game is played with a regular deck of 52 cards; however, the deck is divided based on the level of 

difficulty chosen by the user. The player can enter how many cards they would like to guess from (i.e., 

10 cards, 5 cards, 3 cards etc.). To be clear, each card is unique. For example, if the user chose a range of 

3, the cards they would guess from are 2, 3 and 4 (This is specified on the instruction page for the game). 

Once the user chooses the range, that desired range of cards is generated. The user then has the 

capability to place an amount they wish to bet and guess a card number. Once the player places their 

guess, the system searches to see if that guess is correct. If the guess is correct, the player receives their 

payout based on the certain multiplier and is rewarded with a bonus multiplier if they wish to play again. 

If a player loses, they lose their bet credit and are not given any bonus multipliers. The score is 

determined by multiplying the bet by how many cards are in the deck if the player wins (i.e. $5 bet, 5 

cards in the deck = 5*5=$25 payout). 



GUI Screenshots 

 

Figure 17: GUI Screenshots. 

 

 

 

 



Coding Assignments 
The following table shows how the code for this assignment will be divided: 

Table 2: Coding Assignments. 

Name Assignment 

Henry & Ethan GUI for the entire application, including main 

screen (All front-end components to this 

assignment) 

Cameron & Victor All back-end development for the Blackjack 

casino game 

Oscar & Graydon All back-end development for the Roulette casino 

game 

 

Abbey & Matthew All back-end development for the Odds Are 

casino game 

 

Timeline 
 

 

Figure 18: Timeline for building & testing the application 

 



Appendix  

Entire Class Diagram 
 

 

Figure 19: Class Diagram for the entire application. 


	Introduction
	Purpose of System
	Design Goals
	Performance
	Dependability
	Cost
	Maintenance
	End User Criteria

	Definitions, Acronyms and Abbreviations

	Software Specifications
	Subsystem Decomposition
	Global Software Control
	Boundary Conditions
	Persistent Data Management
	Access Control and Security
	UML Class Diagram
	Subsystem 1: Menu Page and Routing
	Use Cases
	Enter Settings
	Participating actors
	Flow of events
	Entry condition
	Exit condition
	Quality requirements

	User selects game to play
	Participating actors
	Flow of events
	Entry condition
	Exit condition
	Quality requirements


	Object Model
	Sequence Diagram
	State Chart Diagram
	Use Case Diagram
	UML Diagram
	Design Goals

	Software Hardware Mapping
	Subsystem 2: Roulette
	Use Cases
	Play Roulette
	Participating Actors
	Flow of events
	Entry condition
	Exit condition
	Quality requirements


	Use Case Diagram
	Object Models
	Sequence Diagram
	UML diagram
	State Chart Diagram
	Design Goals
	Software Hardware Mapping

	Subsystem 3: Blackjack
	Use Cases
	Play Blackjack
	Participating Actors
	Flow of Events
	Entry Condition
	Exit Condition
	Quality Requirements


	Use Case Diagram
	Sequence Diagram
	Object Model
	Class Diagram
	State Chart Diagram
	Design Goals

	Subsystem 4: Odds Are
	Use Cases
	Play Odds Are
	Participating Actors
	Flow of Events:
	Entry condition
	Exit condition
	Quality requirements


	Use Case Diagram
	Object Models
	Sequence Diagram
	Class Diagram
	Class OddsAreGame

	State Chart Diagram
	Design Goals


	GUI Screenshots
	Coding Assignments
	Timeline
	Appendix
	Entire Class Diagram


